The authors (JF and TB) gratefully acknowledge the support of the DGCYT of the Spanish Ministry of Education and Science. This work was supported by the UPV project No. 063.310-E160/90. The referee is also thanked for his suggestions.

References

Abrahams, S. C. \& Keve, E. T. (1971). Ferroelectrics, 2, 129-154. Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-141. Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142-146. Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107. Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 129-144. Fábry, J., Breczewski, T. \& Petricek, V. (1993). Acta Crist. Submitted.

Krajewski, T., Mroz, B. \& Piskunowicz, P. (1993). Phys. Status Solidi A, 135, 557-564.
Krajewski, T., Mroz, B., Piskunowicz, P. \& Breczewski, T. (1990). Ferroelectrics, 106, 225-230.

Madariaga, G. \& Breczewski, T. (1990). Acta Cryst. C46. 2019-2021.
Mroz, B., Kiefte, H., Clouter, M. J. \& Tuszynski, J. A. (1991). Phys. Rev. B, 43, 641-648.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Okada, K. \& Ossaka, J. (1980). Acta Cryst. B36, 919-921.
Petricek, V. \& Maly, K. (1988). The SDS Syistem. Program Package for X-ray Structure Determination.
Stewart, J. M., Kruger, G. J.. Ammon, H. L.. Dickinson, C. W. \& Hall, S. R. (1972). The XRAY72 System. Version of June 1972. Technical Report TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

Crystalline Phases Related to a Decagonal Quasicrystal. I. A Single-Crystal X-ray Diffraction Study of the Orthorhombic $\mathrm{Al}_{3} \mathbf{M n}$ Phase

By N. C. Shi
X-ray Laboratory, China University of Geosciences, 100083 Beijing, People's Republic of China
X. Z. Lı
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, 100080 Beijing, People's Republic of China
Z. S. MA
X-ray Laboratory, China University of Geosciences, 100083 Beijing, People's Republic of China

and K. H. Kuo*
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, 100080 Beijing, People's Republic of China

(Received 13 April 1993: accepted 16 August 1993)

Abstract

$\mathrm{Al}_{3} \mathrm{Mn}$ (with the stoichiometric composition $\left.\mathrm{Al}_{28.1} \mathrm{Mn}_{10.9}\right), \quad M_{r}=1356.5$, orthorhombic, $P n 2_{1} a$, $a=14.837$ (4), $b=12.457$ (2), $c=12.505$ (2) $\AA . V=$ 2311.2 (8) \AA^{3}, atoms $/$ cell $=4 \times 39, D_{x}=3.90 \mathrm{~g} \mathrm{~cm}{ }^{3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=65.82 \mathrm{~cm}^{-1}, \quad F(000)=$ 2550.15, room temperature, $R=0.068$ for 1289 reflections. About two-thirds of Mn atoms have icosahedral coordination. In a repeat unit b, there are four interpenetrated icosahedra with two Mn and two Al atoms at their centers. This phase has a layer structure consisting of an almost 'flat' layer F sandwiched between two puckered P and p layers in the

[^0]sequence $P F p P^{\prime} F^{\prime} p^{\prime} \ldots$, where $P^{\prime} F^{\prime} p^{\prime}$ and $P F p$ are related by the 2_{1} axes parallel to [010]. A similar layer structure has also been found in the $\pi-\mathrm{AlMn} M$ ($M=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$) phases. Both these two crystalline structures can be obtained from that of the Al-Mn decagonal quasicrystal by substituting a rational ratio of two consecutive Fibonacci numbers for the irrational $\tau=\left[1+(5)^{12}\right] / 2$ in the two quasiperiodic directions.

1. Introduction

Soon after the discovery of the first icosahedral quasicrystal with $m 35$ point-group symmetry, it was found that the quasicrystal and the crystalline phase of a similar composition generally have the same or

Table 1. Refined atomic coordinates and isotropic parameters for $\mathrm{Al}_{3} \mathrm{Mn}$
The number of equivalent positions is four for all atom sites. Atoms $1-14$ belong to the puckered P layer, $15-25$ to the 'flat' F layer and 26-39 to the puckered p layer. The atoms in the puckered P and p layers have pseudo-mirror symmetry with respect to the F layer.

similar local structure. In other words, these two phases consist of the same or similar structural subunits, packed periodically in the crystalline phase and aperiodically in the quasicrystalline phase. By substituting a rational ratio of two consecutive Fibonacci numbers for the irrational $\tau=\left[1+(5)^{1 / 2}\right] / 2$, the characteristic number of the icosahedral symmetry, Elser \& Henley (1985) recovered the cubic lattice of $\alpha-\mathrm{AlMnSi}$ from the icosahedral quasilattice. Conversely, Guyot \& Audier (1985) and Henley \& Elser (1986) independently derived a structural model of the icosahedral quasicrystal based on the icosahedral subunits of α - Al MnSi , an approximant crystalline phase of the quasicrystal or simply an approximant. Later, this idea was extended to the case of a two-dimensional decagonal quasicrystal
with a periodic tenfold axis and Kumar, Sahoo \& Athithan (1986) derived a structural model of it from that of the monoclinic $\mathrm{Al}_{13} \mathrm{Fe}_{4}$ phase. Recently, $\mathrm{Li} \&$ Kuo (1992a) found a new orthorhombic π - $\mathrm{Al}_{4} \mathrm{Mn}$ phase, isostructural with $\mathrm{Al}_{60} \mathrm{Mn}_{11} \mathrm{Ni}_{4}$ (Robinson, 1954) and $T_{3}-\mathrm{AlMnZn}$ (Damjanovic, 1961), and the structural model of the decagonal quasicrystal derived from it agrees well with that determined experimentally by Steurer (1991) for Al-Mn decagonal quasicrystals. Shoemaker (1993) recently derived a structural model of the Al-Mn decagonal quasicrystal from hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ (Shoemaker, Keszler \& Shoemaker, 1989).

An orthorhombic $\mathrm{Al}_{3} \mathrm{Mn}$ phase was discovered by Hofmann (1938), and later studied by Taylor (1960, 1961). The crystallographic data were reported as:
unit-cell parameters, $a=14.79(1), b=12.42(1), c=$ 12.59 (1) \AA; space groups, Pn2 a or Pnma; the unitcell contents were approximately 36 Mn and 124 Al atoms (Taylor, 1961). Fitzgerald, Withers, Stewart \& Calka (1988) first pointed out that the $\mathrm{Al}_{3} \mathrm{Mn}$ phase is a close relative of the $\mathrm{Al}-\mathrm{Mn}$ decagonal quasicrystal phase, and similar results were reported recently by Daulton, Kelton \& Gibbons (1991). However, the structure of $\mathrm{Al}_{3} \mathrm{Mn}$ remained unknown.

Li , Shi \& Kuo (1992) recently derived a structural model of the $\mathrm{Al}_{3} \mathrm{Mn}$ phase from the orthorhombic crystalline $\pi-\mathrm{Al}_{4} \mathrm{Mn}$ phase and a comparison of this model with powder X-ray and high-resolution electron microscopy (HREM) experimental results shows good agreement.

We present here the results of a single-crystal X-ray diffraction study of the orthorhombic $\mathrm{Al}_{3} \mathrm{Mn}$ phase (this formula has been used in the literature, though it is only an approximate composition).

2. Experimental

An Al-22 at. $\% \mathrm{Mn}$ alloy was melted from pure Al and Mn (99.9 and 99.5%, respectively) and homogenized at 1223 K for 72 h . Single crystals of $\mathrm{Al}_{3} \mathrm{Mn}$ can be found in the cavities of the ingot and a crystal with approximate dimensions $0.16 \times 0.25 \times 0.16 \mathrm{~mm}$ was used for X-ray structural analysis.

Data were collected on a Rigaku RASA-IIS fourcircle diffractometer with graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71069 \AA$). Lattice constants were refined from 12 reflections with 2θ in the range $19<2 \theta<32^{\circ}$. The $\omega-2 \theta$ scan technique was used, scan rate $8.0^{\circ} \mathrm{min}^{-1}$, scan width $(2.7+0.5 \tan \theta)^{\circ}$. A total of 4840 reflections were collected. Scan range: $3 \leq 2 \theta \leq 65^{\circ}$ under the following conditions: $0 \leq h \leq$ $22,0 \leq k \leq 18$ and $0 \leq l \leq 18$ (3087 unique reflections measured). The intensity variation of three standard reflections $(060,006,450)$ measured every 100 reflections was below 1.2%. The reflections were corrected for Lorentz and polarization effects. 1289 independent reflections were used for refinement [$I>$ $3.5 \sigma(I)$] and $R=0.068$.

3. Structure determination and refinement

The structure of the $\mathrm{Al}_{3} \mathrm{Mn}$ phase was determined using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980) and refined using SHELX76 (Sheldrick, 1976). Taylor (1961) considered Pnma and $\mathrm{Pn}_{2} a$ as possible space groups for the $\mathrm{Al}_{3} \mathrm{Mn}$ phase. Both space groups have been tried in the present investigation, though $P n 2_{1} a$ agreed better with the experimental results. The scattering factors and anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 71-148). The
refined parameters were the scale factor, atomic coordinates and isotropic temperature factors, first assuming that all sites were occupied by Al atoms and then $\mathrm{Al} / \mathrm{Mn}$ assignment was deduced from the peak height in the Fourier map. Several Fourier syntheses indicated that the peak height of Mn atoms is higher than Al atoms, though the dividing line is not very clear. During the refinement an improvement occurred when some of the Al sites with low thermal parameters were partially occupied by Mn atoms. The final refinements led to $R=0.091$ for 39 $\times 4+1+7=164$ parameters. The values were $R=$ $w R=0.068$ including anisotropic thermal parameters and occupancy $[R=0.131, w R=0.119$ for all 2539 reflections, except $I \leq 0.5(I)]$. The goodness of fit $(\mathrm{GOF})=3.094$, where $\mathrm{GOF}=\left\{\sum\left[w\left(F_{o}-F_{c}\right)^{2} /\right.\right.$ No. of reflections - No. of parameters] $\}^{1 / 2}$ and $(\Delta / \sigma)_{\max }=$ 0.254 . Final excursions were -2.0 to $+3.5 \mathrm{e}^{\AA^{-3}}$. The final parameters and coordination numbers (limited to $3.2 \AA$) are listed together with occupancies in Table 1 and bond lengths are given in the Appendix. The F_{o} and F_{c} data have been deposited.*

4. Description

4.1. Layer Structure

Fig. 1 shows the layer structure of the $\mathrm{Al}_{3} \mathrm{Mn}$ phase consisting of three kinds of layers - one almost

Fig. 1. The [001] projection of orthorhombic $\mathrm{Al}_{3} \mathrm{Mn}$. It has a layer structure consisting of almost 'flat' (F and F ') and puckered (P, P^{\prime}, p and p^{\prime}) layers packed in the sequence $P F p P^{\prime} F^{\prime} p^{\prime} \ldots$ in the [010] direction.
'flat' layer (F) sandwiched between two puckered layers (P and p). Therefore, this structure can be described in terms of these layers stacked along the b axis in $P F p P^{\prime} F^{\prime} p^{\prime} \ldots$ sequence, where $P^{\prime} F^{\prime} p^{\prime}$ are related to $P F p$ by 2_{1} axes parallel to [010]. The F layer deviation from planarity is about $0.2 \AA$, whereas the puckered layers P and p deviate by more than $1 \AA$. Fig. 2 shows a plan view of the 'flat' layer

(a)

(b)
F (Fig. 2b) and puckered layers P and p (Figs. $2 a$ and $2 c$) with their thicknesses indicated.
In the F layer, Al and Mn atoms lie alternately on the vertex of a decagon with an Al atom at its center, see Fig. 2(b). These decagons are zigzag linked in the [100] direction by edge-sharing, see the thick lines in Fig. 3 which is a [010] projection of ($F P p^{\prime}$) layers. The distance between two Mn (or Al) atoms is about $4.9 \AA$. The other configuration of interest is the pentagonal star with five Mn atoms forming a central pentagon (Al24 is occupied by Mn 42.7 and Al 57.3%) and five Al atoms at the apexes (shown more clearly in Fig. 3). The bond length between two Mn atoms is about $2.6 \AA$.
The puckered P and p^{\prime} layers are more densely populated than the F layer, mainly by Al atoms. In projection they are almost the same but rotated 180° from each other around [010]. These puckered layers may be considered as consisting of two almost planar sublayers, and the atoms in the upper sublayer are indicated by open circles and the atoms in the lower sublayer by shaded circles in Figs. 2(a) and 2(c). Viewed along the b axis (see Fig. 4c), the Al and Mn atoms in these two puckered layers form mainly pentagonal antiprisms and prisms. After a rotation of 180° and a translation of $b / 2$, the icosahedron with Al12 at its upper vertex in Fig. 3 will fall on an icosahedron with All7 at its upper vertex, and vice versa (see Fig. 4c). The pentagons are centered by atoms located above or below the pentagon at a

Fig. 2. Plan view of the three kinds of layer in $\mathrm{Al}_{3} \mathrm{Mn}$ with their corrugations indicated by the y parameters. (a) Puckered layer P, (b) 'flat' layer F and (c) puckered layer p. The puckered layers consist of two almost planar sublayers indicated by open and shaded circles, respectively. There is pseudo-mirror symmetry between the puckered layers P and p. The atomic site parameters and occupancies are given in Table 1.
vertical distance of about $0.8-1.2 \AA$, whereas the pentagon itself is puckered by no more than $0.3 \AA$ (see Figs. $4 a$ and $4 c$).

4.2. Coordination polyhedra

As stated above, most atoms in $\mathrm{Al}_{3} \mathrm{Mn}$ are at the vertices or centers of prisms and antiprisms which
are related by the symmetry operations of the space group $P n 2_{1} a$. A detailed description of one prism and some antiprisms are given below as typical examples:

Atom Al17 in Fig. 2(b) centers the pentagonal prism formed between two puckered P and p layers by the atoms All, Al2, Al4, A16, Al10 in Fig. $2(a)$ and atoms $\mathrm{Al} 26, \mathrm{Al} 27, \mathrm{Al} 29, \mathrm{Al} 31$ and Al 35 in

Fig. 3. The [010] projection of $F P_{p^{\prime}}$ layers. Decagons and pentagonal stars shown as thick lines are on the 'flat' layer, whereas pentagons forming pentagonal antiprisms or icosahedra shown as thin lines are on the puckered p^{\prime} and P layers. Another kind of icosahedron with its twofold axis parallel to [010] is outlined with double lines. (a) -(e) mark the atoms or polyhedra shown in Figs. 4(a-e).

Fig. 4. Coordination polyhedra in $\mathrm{Al}_{3} \mathrm{Mn}$. (a) Capped pentagonal prism; (b) distorted icosahedron with a twofold axis parallel to [010]; (c) vertex-sharing icosahedra with their pseudofivefold axes parallel to [010]: (d) Mn23 irregular polyhedron (CN9); (e) Mn8 irregular polyhedron (CNI4).

Table 2. Interatomic distances in ($a-g$) Al17 pentagonal prism, ($e-k$) Mn5 and ($i-o$) A137 icosahedra

		Interatomic distances (\AA)			Interatomic distances (\AA)
a			Al6	Al34	2.878 (7)
Mn30	Al26	2.537 (4)	All0	Al32	2.824 (1)
Mn30	Al27	2.456 (8)	Allo	Mn33	2.822 (7)
Mn30	Al31	2.530 (6)			
Mn30	Al35	2.494 (5)	i		
Mn30	Al29	2.530 (7)	Mn5	Al34	2.896 (7)
			Mn5	Al32	2.915 (4)
b			Mn5	Mn33	2.899 (4)
Al26	Al27	2.642 (9)	Mn5	Al36	2.916 (7)
Al27	Al31	2.898 (6)	Mn5	Al39	2.912 (5)
Al31	Al35	2.769 (6)			
Al35	Al29	2.746 (6)	j		
Al29	Al26	2.860 (5)	Al32	Al32	2.866 (9)
			Mn33	Mn33	2.953 (5)
c			Al34	Al34	2.855 (6)
All 7	Mn30	2.446 (8)	Al39	Al39	2.919 (6)
All 7	Al26	2.867 (4)	Al36	Al36	2.832 (5)
All 7	Al27	2.819 (4)			
Al17	Al31	2.919 (6)	k		
All7	Al35	2.855 (5)	Al37	Al39	2.735 (5)
All 7	Al29	2.870 (7)	A137	Al33	2.604 (4)
			A137	Al36	2.740 (7)
d			Al37	Al34	2.643 (6)
All	Al26	3.198 (10)	Al37	Al32	2.623 (4)
Al2	Al27	3.077 (9)	Al37	Mn5	2.607 (9)
Al4	Al29	3.197 (11)			
Al6	Al31	3.183 (10)	l		
All0	Al35	3.194 (10)	Mn20	Al36	2.807 (7)
			Mn20	Al32	2.646 (7)
e			Mnl8	Al32	2.783 (7)
All7	All	2.876 (5)	Mnl8	Mn33	2.769 (7)
Al17	Al2	2.828 (4)	Mn19	Mn33	2.835 (7)
Al17	Al4	2.908 (6)	Mn19	Al34	2.757 (7)
Al17	Al6	2.818 (6)	Mn25	Al34	2.765 (9)
Al17	All0	2.808 (5)	Mn25	Al39	2.721 (7)
			Al24	Al39	2.809 (7)
f			Al24	Al36	2.803 (7)
All	Al2	2.822 (9)			
Al2	Al6	2.838 (5)	m		
Al6	All0	2.827 (7)	Al37	Mn20	2.667 (6)
Al10	Al4	2.751 (6)	Al37	Mn25	2.659 (4)
Al4	All	2.791 (5)	Al37	Al24	2.678 (4)
			Al37	Mnl8	2.578 (4)
			Al37	Mnl9	2.571 (6)
Mn5	All7	2.354 (8)			
Mn5	Al2	2.530 (4)	n		
Mn5	All	2.485 (4)	Mn20	Mn18	2.626 (6)
Mn5	Al6	2.488 (6)	Mn18	Mn19	2.714 (6)
Mn5	All0	2.495 (5)	Mn19	Mn25	2.703 (5)
Mn5	Al4	2.591 (7)	Mn25	Al24	2.648 (8)
			Al24	Mn20	2.758 (5)
h					
All	Al36	2.720 (6)	o		
All	Al39	2.754 (7)	All2	Al37	2.519 (8)
Al2	Al34	2.852 (7)	Al12	Mn25	2.600 (4)
Al2	Al39	2.868 (7)	All2	Al24	2.498 (4)
Al4	Al32	2.787 (7)	All2	Mni8	2.613 (5)
Al4	Al36	2.727 (7)	All2	Mn19	2.616 (6)
Al6	Mn33	2.797 (7)	All2	Mn 20	2.635 (6)

Fig. 2(c), see the capped pentagonal prism in Fig. 4(a). The interatomic distances between the atoms of the All7 pentagonal prism are summarized in Table 2(a)-2(g).
In fact, this capped pentagonal prism links two icosahedra centered by Mn5 and Mn30, respectively, with their pseudo-fivefold axis in the [010] direction, and A112 and A137, in turn, also have icosahedral
coordination, see Fig. 4(c). The bond lengths in Mn5 and A137 icosahedra are summarized in Table 2(e)$2(k)$ and $2(i)-2(o)$. As in the π - $\mathrm{Al}_{4} \mathrm{Mn}$ crystalline phase and the Al-Mn decagonal quasicrystal ($\mathrm{Li} \&$ Kuo, 1992a), there are four interpenetrated icosahedra or one pentagonal prism ($2.9 \AA$ thick) and four antiprisms ($2.4 \AA$ each) in a repeat unit $b \simeq$ $1 \times 2.9+4 \times 2.4=12.5 \AA$ (Shoemaker, 1993).

It is of interest to note that another kind of distorted icosahedra exists with its twofold axis parallel to the [010] axis. These icosahedra are centered by Mn18, Mn19, Mn20, Mn25 and Al 24 ($42.7 \% \mathrm{Mn}$ and $57.3 \% \mathrm{Al}$), respectively, located at the vertices of the central pentagon of a pentagonal star (see Figs. $2 b$ and 3). Only the icosahedron around Mn20 is outlined by double lines in Fig. 3. As shown in Fig. $4(b)$, All6, Mn18, Al22 and Al24 are on the same F layer, Al6, Al7, Mn11 and All2 are at the P layer, and $\mathrm{Al} 31, \mathrm{Al} 32, \mathrm{Al} 36$ and Al 37 (partially occupied by Mn) are at the p layer. This kind of icosahedron links the distorted double icosahedra, shown in Fig. 4(c), forming an icosahedral net in the (010) plane. In $\mathrm{Al}_{3} \mathrm{Mn}$ about $2 / 3$ of Mn atoms and $1 / 3$ of Al atoms have icosahedra coordination.

In addition to these pentagonal prisms and icosahedra, there are some irregular polyhedra as well. The irregular polyhedron with Mn 23 at its center (Fig. $4 d$) has a coordination number (CN) of 9. It links the two neighboring icosahedra by vertex sharing (All and All0, respectively). As pointed out by Shoemaker et al. (1989), this CN9 polyhedron can be visualized as a trigonal prism with three additional Al atoms capped on its three rectangular prismatic faces. Fig. 4(e) shows the Mn8 irregular polyhedron with a CN14 coordination, and the Mn11 and Mn33 polyhedra have a CN13 coordination of similar nature (see the bond lengths in the Appendix).

5. Related phases

5.1. $\mathrm{Al}_{3} \mathrm{Mn}$ and $\pi-\mathrm{Al}_{4} \mathrm{Mn}$

In a transmission electron microscopic study of the crystalline approximants of the decagonal quasicrystal in the AlMnCu system, the structural relationship of the orthorhombic $\pi-\mathrm{Al}_{20} \mathrm{Mn}_{3} \mathrm{Cu}_{2}$ and $\mathrm{Y}-\mathrm{AlMnCu}$ phases has been discussed (Li \& Kuo, 1992b). The electron diffraction patterns and lattice images show that the two phases are probably constructed of the same structural subunits (flattened hexagons) but packed differently, see Fig. 5. This is possibly also the case in the π - AlMn and $\mathrm{Al}_{3} \mathrm{Mn}$ phases since they are isostructural with the two orthorhombic phases, respectively, in the AlMnCu system.

In the π-AlMn case, all the hexagons have the same orientation and they form a B-centered rectangular lattice in the (010) plane, see the lower part of Fig. 5. In the $\mathrm{Al}_{3} \mathrm{Mn}$ phase, the hexagon slabs alternate between two different orientations at 36° with each other, see the upper part of Fig. 5. The vertices of this flattened hexagon superimpose on the centers of icosahedra in Fig. 3. In other words, the different orthorhombic lattices of these two phases
are derived from the two different periodical tilings of the same subunit of flattened hexagon consisting of distorted icosahedra. This explains why these two phases frequently intergrow.

5.2. $\mathrm{Al}_{3} \mathrm{Mn}$ and $\mathrm{Al}_{13} \mathrm{Fe}_{4}$

The structure of the orthorhombic $\mathrm{Al}_{3} \mathrm{Mn}$ phase is also closely related to that of the monoclinic $\mathrm{Al}_{13} \mathrm{Fe}_{4}$ phase (Black, 1955). First, the structures of these two crystalline phases are both composed of flat (not exact in the $\mathrm{Al}_{3} \mathrm{Mn}$ case) and puckered layers. Secondly, the heavy atoms (Mn, Fe) in the flat layer form a net of pentagons and rhombi, and the Al atoms together with the heavy atoms form the centered decagons and pentagonal stars. The local structural subunits in both of the 'flat' and puckered layers are alike and the relationship between adjacent layers is similar in the two phases. Recently, the structure of $\mathrm{Al}_{13} \mathrm{Fe}_{4}$ has also been shown to consist of icosahedral subunits (Barbier, Tamura \& VergerGaugry, 1993).

5.3. $\mathrm{Al}_{3} \mathrm{Mn}$ and $\mu-\mathrm{Al}_{4} \mathrm{Mn}$

Recently, the structure of hexagonal $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ has been analyzed as an approximant of a decagonal quasicrystal (Shoemaker, 1993). This crystalline phase consists of layers perpendicular to the pseudo-

Fig. 5. Schematic diagram showing the lattice correspondence between the two orthorhombic approximants, $\mathrm{Al}_{3} \mathrm{Mn}$ and $\pi-\mathrm{Al}_{4} \mathrm{Mn}$, in (010) orientation. Both consist of the same subunit of flattened hexagons, but in different tessellations, and are in the same orientation in $\pi-\mathrm{Al}_{4} \mathrm{Mn}$ and two different orientations in $\mathrm{Al}_{3} \mathrm{Mn}$. The vertices of this flattened hexagon in a unit cell (drawn as solid circles) superpose on the centers of icosahedral chains in Fig. 3.
fivefold [100] axis of the hexagonal cell. Atoms on these layers in the $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ structure form centered pentagonal prisms and antiprisms (or icosahedra), which are analogous to $\mathrm{Al}_{3} \mathrm{Mn}$.

5.4. $\mathrm{Al}_{3} \mathrm{Mn}$ and $\mathrm{Al}-\mathrm{Mn}$ decagonal quasicrystal

A structural model of the Al-Mn decagonal quasicrystal has been proposed based on the structure of the π-AlMn phase (Li \& Kuo, 1992a). The flattened hexagon in the structure of the π-AlMn phase (and also $\mathrm{Al}_{3} \mathrm{Mn}$) can be further broken into four kinds of Penrose-type rhombus tiles with different decorations. Starting with any one of them and following the given matching rules, the aperiodic flat and puckered layer of the Al-Mn decagonal quasicrystal can be constructed. With the structure of $\mathrm{Al}_{3} \mathrm{Mn}$ solved, a better structural model of the Al-Mn decagonal quasicrystal might be derived from it, as was demonstrated recently by Shoemaker
(1993) based on the structure of $\mu-\mathrm{Al}_{4} \mathrm{Mn}$. On the other hand, the lattice parameters of $\pi-\mathrm{Al}_{4} \mathrm{Mn}$ and $\mathrm{Al}_{3} \mathrm{Mn}$ have been recovered by substituting a rational ratio of two consecutive Fibonacci numbers F_{n+1} / F_{n} for τ in two quasiperiodic directions of the decagonal quasicrystal (Zhang \& Kuo, 1990).

This work was generously supported by the National Natural Science Foundation of China. The authors are grateful to Dr Clara B. Shoemaker for sending them a preprint on $\mu-\mathrm{Al}_{4} \mathrm{Mn}$ before publication and also for her constructive comments. XZL thanks the Postdoctoral Program of the Chinese Academy of Sciences.

Note added in the revised copy: After first submission of this paper in April 1992, we learned that Hiraga, Kaneko, Matsuo \& Hashimoto (1993) and Kang, Malaman, Venturini \& Dubois (1992) have also studied the structure of $\mathrm{Al}_{3} \mathrm{Mn}$.

APPENDIX

Selected interatomic distances (\AA) limited to $d=3.2 \AA$ in the $\mathrm{Al}_{3} \mathbf{M n}$ phase

Al1 polyhedron	
A139	$2.754(7)$
Al17	$2.876(5)$
A14	$2.791(5)$
Al15	$3.104(7)$
Mn5	$2.485(4)$
Mn23	$2.426(4)$
A121	$2.978(4)$
A12	$2.822(9)$
A128	$3.216(8)$
A136	$2.720(6)$
All3	$2.488(7)$
Al26	$3.198(10)$

Al4 polyhedron	
Mn19	$2.428(5)$
Al29	$3.197(11)$
Al17	$2.908(6)$
All5	$2.922(5)$
Al10	$2.751(6)$
Al1	$2.791(5)$
Al21	$3.115(5)$
Al36	$2.727(7)$
Al32	$2.787(7)$
Mn5	$2.591(7)$
Mn8	$2.642(7)$
Al9	$2.702(4)$

A17 polyhedron	
Al34	$3.083(7)$
Al35	$2.726(7)$
A16	$2.764(8)$
Mn20	$2.661(6)$
Mn8	$2.921(9)$
Mn11	$2.889(5)$
A129	$2.769(7)$
A13	$2.754(4)$
Mn18	$2.694(7)$
Mn30	$2.861(2)$
Al16	$2.851(6)$
Al12	$2.663(4)$

Al2 polyhedron	
Mn5	$2.530(4)$
Mn25	$2.359(4)$
Al21	$3.020(5)$
Al34	$2.852(7)$
Al27	$3.077(9)$
Al6	$2.838(5)$
Al14	$2.748(7)$
Al16	$2.847(7)$
Al9	$2.826(5)$
Al39	$2.868(7)$
Al17	$2.828(4)$
Al1	$2.822(9)$
Mn5 polyhedron	
Al2	$2.530(4)$
Al34	$2.896(7)$
Al32	$2.915(4)$
Al6	$2.488(6)$
Mn33	$2.899(4)$
Al36	$2.916(7)$
Al39	$2.912(5)$
Al17	$2.354(8)$
Al4	$2.591(7)$
Al10	$2.495(5)$
Al37	$2.607(9)$
Al1	$2.485(4)$
Mn8 polyhedron	
Al3	$2.554(4)$
Al9	$2.896(5)$
Al7	$2.921(9)$
Al35	$2.721(6)$
Mn30	$2.903(4)$
Al38	$2.916(2)$
Al12	$2.777(4)$
Al36	$3.021(7)$
Al13	$3.109(6)$
Mn18	$2.751(7)$
Mn19	$2.788(6)$
Al31	$2.644(6)$
Al4	$2.642(7)$
Al15	$2.932(7)$

Al3 polyhedron	
Mn8	$2.554(4)$
Al24	$2.533(4)$
Al7	$2.754(4)$
Mnl1	$2.602(5)$
All4	$2.801(7)$
All6	$3.204(5)$
Al38	$2.735(7)$
All3	$2.662(7)$
Mn18	$2.465(4)$
Al15	$3.066(6)$
Al22	$2.985(5)$
Al26	$3.475(9)$

Al6 polyhedron
Al34 $\quad 2.878$ (7)

Al7	2.764 (8)	All3 polyhedron	
Al22	2.808 (5)		
Mn5	2.488 (6)		3.160 (7)
Mn20	2.450 (5)	Al38	2.358 (5)
Mnl1	2.756 (5)	Al36	2.995 (5)
A131	3.183 (10)	All5	2.856 (6)
A12	2.838 (5)	Al22	
All 7	2.818 (6)	${ }_{\text {Mn23 }}$	2.488 (7) 2.485 (6)
All0	2.827 (7)	Mn8	$2.485(6)$ 3.109 (6)
Mn33	2.797 (7)	Mn8 Mn3	$3.109(6)$ 3.089 (3)
All6	2.984 (5)	Mn33 Al3	$\begin{aligned} & 3.089 \text { (3) } \\ & 2.662 \text { (7) } \end{aligned}$
Al9 p	hedron	Al28	2.615 (6)
Mn8	2.896 (5)	All0	2.683 (4)
All4	2.861 (7)		
Al39	3.051 (4)	All6 polyhedron	
Al32	3.051 (7)		
Mn30	2.889 (7)	All 4	2.887 (6)
Mn25	2.754 (6)	Al39	2.824 (6)
Al27	2.844 (6)	Al32	2.869 (6)
Al21	2.829 (7)	Mn18	2.680 (7)
Al12	2.680 (7)	Mn20	2.535 (5)
Al2	2.826 (5)	Mn25	2.569 (5)
Mn19	2.659 (6)	Al31	3.056 (5)
Al31	2.742 (6)	Al24	2.653 (5)
Al4	2.702 (4)	Al2	2.847 (7)
		Al27	3.035 (7)

Al10 polyhedron	
All7	$2.808(5)$
Al4	$2.751(6)$
Mn23	$2.391(4)$
Mn33	$2.822(7)$
Al21	$2.877(6)$
Al35	$3.194(10)$
Al32	$2.824(1)$
Al22	$3.075(7)$
A16	$2.827(7)$
Mn5	$2.495(5)$
All3	$2.683(4)$

Mn11	polyhedron
Mn20	$2.855(6)$
Al29	$2.742(6)$
Al14	$2.836(7)$
A38	$3.186(5)$
Al13	$3.160(7)$
Al7	$2.899(5)$
Al22	$2.706(7)$
Al6	$2.756(5)$
Al26	$2.805(6)$
Mn30	$2.896(7)$
Mn33	$3.022(10)$
Al3	$2.602(5)$
Al12	$2.736(7)$
Al24	$2.729(6)$

All4 polyhedron		All 5 polyhedron	
Mnll	2.836 (7)	Mn18	2.630 (7)
All6	2.887 (6)	Mn19	2.572 (5)
Al9	2.861 (7)	Al29	2.836 (5)
Al26	2.766 (7)	Al38	2.745 (5)
Mn30	2.754 (5)	Al4	2.922 (5)
Mn25	2.658 (5)	All	3.104 (7)
Al3	2.801 (7)	All 3	2.856 (6)
Al27	2.726 (9)	Al26	2.963 (7)
Al12	2.495 (10)	Mn33	2.720 (6)
Al24	2.603 (6)	Al28	3.195 (7)
Al2	2.748 (7)	Mn23	2.490 (4)
Al34	3.168 (5)	Mn8	2.932 (7)
Al7	3.302 (6)	Al3	3.066 (6)
All7 polyhedron		Mn18 polyhedron	
Al29	2.870 (7)	Mn19	2.714 (6)
Al4	2.908 (6)	All 5	2.630 (7)
Al10	2.808 (5)	All 6	2.680 (7)
All	2.876 (5)	Al12	2.613 (5)
A135	2.855 (5)	Al32	2.783 (7)
Al26	2.867 (4)	Mn33	2.769 (7)
Mn30	2.446 (8)	Al7	2.694 (7)
Al27	2.819 (4)	Al28	2.650 (5)
A16	2.818 (6)	Mn20	2.626 (6)
Mn5	2.354 (8)	Mn8	2.751 (7)

[^0]: * Correspondence author: PO Box 2724, 100080 Beijing, People's Republic of China.

